Exceptional service in the national interest

Fundamental Understanding of Methane-Carbon Dioxide-Water (CH₄-CO₂-H₂O) Interactions in Shale Nanopores under Reservoir Conditions Yifeng Wang, Tuan Anh Ho, Yongliang Xiong, Louise J. Criscenti, Philippe Weck, Edward Matteo and Jessica Kruichak (Sandia National Laboratories)

Objectives:

Understand two important processes that control gas-in-place(GIP) & well production:

- Methane partitioning in the nanopores of mudstone matrices.
- Methane transport from low-permeability matrices to fracking-induced fracture networks.

Field observations

- Core/outcrop sample collection
- Quantification of heterogeneities

Material characterization

- Pore structures: SANS, BET, TEM, SEM, etc
- Chemistry & mineralogy: XRD, XRF, etc

Sorption/desorption measurements

- Methane sorption/desorption on model materials
- Methane sorption/desorption under high P & high T
- Chemical/physical stimulations

Synthesis of nanoporous materials

Gas disposition & release Gas in place (GIP) Gas migration from matrix

- into fractures
- Stimulated volume Gas for secondary recovery

- Molecular dynamic (MD) modeling
- Binding energies of methane sorption
- Diffusion rates

Nanoscience

- Effects of nanopore confinement on fluid thermodynamic properties
- Effects of nanopore confinement on methane transport (microfluidics in shale)

Upscaling Percolation theory Fractal representation

Predictive models

Methane kerogen matrix is release from characterized by a fast release of pressurized free gas followed by a slow release of adsorbed gas.

Table 1. Experimental measurements of sorption capacities and sorption rates for the model substances at 1 bar total pressure

Model Substances	Temp, °C	Gas Mixture, volume percent	Pressure, bar	Sorption Capacity, mg/g	Sorption Rate, mg/g min ⁻¹
DARCO activated carbon	25	85% CH ₄ + 15% CO ₂	1	28	0.68
	50	85% CH ₄ + 15% CO ₂	1	11	0.59
	75	85% CH ₄ + 15% CO ₂	1	9.0	0.31
	100	85% CH ₄ + 15% CO ₂	1	2.1	0.14
	125	85% CH ₄ + 15% CO ₂	1	1.8	0.10
Montmorillonite, <75 μm	25	85% CH ₄ + 15% CO ₂	1	2.8	4.7×10^{-2}
	50	85% CH ₄ + 15% CO ₂	1	0.30	9.6×10^{-3}
	75	85% CH ₄ + 15% CO ₂	1	0.19	6.7×10^{-3}
	100	85% CH ₄ + 15% CO ₂	1	0.18	5.1×10^{-3}
	125	85% CH ₄ + 15% CO ₂	1	0.12	3.3×10^{-3}
Crushed Shale	25	85% CH ₄ + 15% CO ₂	1	0.29	3.3×10^{-3}
	50	85% CH ₄ + 15% CO ₂	1	0.21	2.7×10^{-3}
	75	85% CH ₄ + 15% CO ₂	1	0.16	1.7×10^{-3}

150

100

50

1000

- We found that methane release from kerogen matrix is characterized by a fast release of pressurized free gas followed by a slow release of adsorbed gas.
- Significant amount of gas deposited in kerogen can be trapped in isolated pores and thus not recoverable.
- Significant fraction methane can sorb onto clay minerals.
- A new kerogen model is needed to reproduce FTIR data.

Sample 1

Sample 2

47%

Fast

30%

35%

Unrecoverable

50%

Slow

35%

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-4582P

